
PRO_GEN
Michael Gans
Tylor Lilley
Steve Moskal
Bob Tishma

Procedural generation

Overview

Background

Art & Terrain

Noise

Game Generation

Applications in Unity

Summary

Questions

No Man’s Sky

Background

● Method of creating data algorithmically rather than manually
● Computer graphics: commonly used for creating textures
● Video games: used for creating various other kinds of content

○ Examples: items, quests or level geometry.

● Common applications include (not limited to)
○ Smaller file sizes
○ Larger amounts of content than can be created manually
○ The inclusion of randomness for less predictable gameplay experiences

● Also been used for various other purposes and in other media

Past

● Procedural generation has been used in video games
as early as the 70’s
○ Roguelike subgenre
○ Beneath Apple Manor

● Earliest Graphical Computer Game
○ limited by memory constraints forced content, such as maps, to be

generated algorithmically on the fly
■ wasn’t enough space to store a large amount of pre-made levels

and artwork
○ Pseudorandom number generators were often used with predefined seed

values in order to create very large game worlds that appeared premade.

Past - Games

● Rouge (1980s)
● Akalabeth (1980)
● River Raid (1982)

● Elite (1984)
● Rescue on Fractalus (1985)
● The Sentinel (1986)

Moving Toward Present Day

● Hardware Advances
○ Able to store thousands of times as much data than was possible in the early 80s

● Content such as textures and character and environment models are created

by artists beforehand
○ Keeps the quality of content consistently high.

○ Needs to be designed by hand (large games take hundreds of artists)

● Hybrid/Middleware
○ Pre-made with procedurally applied distortions

■ SpeedTree

Present Day
● 2004

○ .kkrieger
○ RoboBlitz
○ Spore

● 2006
○ Dwarf Fortress

● 2008
○ Left 4 Dead

● 2009
○ Left 4 Dead 2
○ Minecraft

● 2014
○ Elite Dangerous

Moving Toward the Future

Handmade Vs. Procedural Generation

Detailed Vs. Freedom

Future

● No Man’s Sky
○ “a game about exploration and survival in an
○ infinite procedurally generated galaxy”

● New methods and applications are presented
annually in conferences such as the IEEE
Conference on Computational Intelligence and
Games and Artificial Intelligence and Interactive
Digital Entertainment

ART & Terrain

● Wang Tiles
○ N = Horizontal Borders & M = Vertical Borders

■ Complete Set: N2M2
■ Full Tiling: 2NM

● Fractals
○ Fractal Algorithms

■ Perlin Noise
■ Simplex Noise

NOISE

● Noise is a building block for creating a variety of procedurally generated
textures.

● Significantly, it can be used to simulate natural patterns from simple
mathematical functions.

● Although noise can be used to generate patterns in any number of
dimensions, I’ll explain how 2D noise is used to create textures and
heightmaps.

White Noise

● The most basic type of noise is white noise.
● Generated by getting a random value [0,1] for

each pixel.
● Ew, what an unrealistic texture.
● Unlike white noise, natural patterns should have

smoothness as well as multiple levels of detail.

Interpolated Noise

● Instead, let’s make a 2D grid of points that has
a lower resolution that the pixels of our image.

● Now we can interpolate between the four
surrounding points, called lattices, for each pixel.

● Basic bilinear interpolation is a quick and simple
way to do this.

Turbulence

● We can sum different sizes of our smooth noise to create a better texture.
● At each pixel, this sum is known as the turbulence at that point. Each pass is

known as an octave.
● It actually looks pretty nice now. Unfortunately, you can still notice axis-

aligned bias. To deal with this, we need to use a better smooth function than
linear interpolation.

This texture is created by
summing the above
textures at varying scaled
amplitudes.

Perlin Noise

● Our previous technique used value noise. This
means each lattice was assigned a single value
[0,1].

● Perlin Noise, instead of using a single value, uses
gradient noise. Each lattice is assigned a random
N-dimensional unit vector.

● To interpolate a pixel to a gradient point, you use
a vector pointing from the lattice to the pixel, and
dot product it with the gradient vector.

Perlin Noise (above) looks a lot better and
has less directional artefacts than the value
noise with bilinear interpolation (below).

Clouds with Perlin Noise
 These are summed together

to make this

Terrain Generation with Noise

● It’s easy to apply our noise textures to heightmaps.
● Color at each pixel represents height.
● The cloud texture is an excellent representation of mountains.

Terrain Generator Code

Terrain Generator Code

Terrain Generation with Noise

● Using a separate noise gradient, we can also define different areas of the
terrain to have exclusive parameters.

In this low-resolution map, pixels with a color value <0.35 are where we place buildings.

Cool Texture Examples

Using math functions to generate simple textures as a base, we can add noise to
make some nice looking stuff.

Pixel at x,y = sin(x+y)/scale Marble-esque Waves or sand dunes carpet

Cool Texture Examples

Using math functions to generate simple textures as a base, we can add noise to
make some nice looking stuff.

Pixel at x,y = sin(sqrt(x²+y²)/scale Diseased-looking tree Nice slice of wood Even more diseased tree

Gaming

Content: Diablo, ESV: Skyrim,
Borderlands

Terrain: ESII: Daggerfall,
Scorched Earth

Both: Minecraft, Terraria, No
Man’s Sky

Content

Skyrim - Dynamic Quest System

Diablo - Enemies, Items

Borderlands - Gun Creation

Terrain

The Elder Scrolls II: Daggerfall - 1996

Huge, mostly empty generated world

- Empty, meaningless

Massive maze like dungeons

- One is bigger than the world of
ESIII: Morrowind

Terrain

Scorched Earth: 1991

1d noise (“Proper Function”)

Terraria: 2011

Terraria: 2D noise (“Polar”)

Minecraft: A Case Study

MineCraft : 2009

- Structures
- Villages
- Ruins
- Strongholds

- Items
- Chest-spawned
- NPC-traded
- Enemy-dropped

Terrain

Minecraft : 2009

- Uses 3d Perlin Noise and
Interpolation

- Values based on “seed”
- Values < n represent land where

Values >=n represent air
- Biomes assessed via graph
- Features added at end

Minecraft - Sculpting a world

1. Generate landscape
2. Biome designation
3. World details
4. Add structures

Biomes

- Generated based on graph
- bordering biomes are logical
- temp vs rainfall

- Can alter elevation
- deserts are flat, etc

- Can be separated by river
- Alters spaws

Post-Processing

Features: minecraft-generated caves, ravines, lakes, lava lakes

Ores: spawn based on parameters

Structures: Villages, strongholds, temples

Villages are created by expanding outward from a well

Generating the landscape

- One octave active
- Gradual
- Smooth
- No “anomalies”

- No interpolation
- “Blocky”

- Features
- caves
- lakes
- biomes

- Two octaves active
- more interesting boundaries
- less predictable
- more anomalies

- Same Perlin Noise
- Interpolation in x

and z axes
- No y “lerp”
- Features remain

generally
uneffected

Demos/Examples

interpolation, magnitudes, octaves

- All 6 octaves active
- large terrain features given highest

magnitude
- perturbed by lower octaves
- Scaled up

- More “funny” Characteristics
- boundaries “tucking” in on

themselves
- anomalies
- differences more drastic

Y-Lerp

Final World

- All other options remained
constant throughout

Applications in Unity

An Example Usage: Generating a Maze

● Depth First Search

● Kruskal’s Algorithm

● Animation of Prim's Algorithm at work

https://upload.wikimedia.org/wikipedia/commons/transcoded/b/b1/MAZE_30x20_Prim.ogv/MAZE_30x20_Prim.ogv.480p.webm
https://upload.wikimedia.org/wikipedia/commons/transcoded/b/b1/MAZE_30x20_Prim.ogv/MAZE_30x20_Prim.ogv.480p.webm

Basic Overview of Prim’s Algorithm

1. Start with a grid full of walls and unmarked cells.

2. Pick a cell, mark it as part of the maze. Add the walls of the cell to the wall list.

3. While there are walls in the list:

● Pick a random wall from the list. If the cell beyond that wall isn't in the maze yet:

○ Destroy the wall and mark the cell on the opposite side of it

○ Add the neighboring walls of the cell to the wall list.

● Remove the wall from the list.

Code Snippet
Cell Object Prefab:

Source Code

Let’s Look at the actual algorithm in Unity and see it work!

Other Resources

● SpeedTree Example
○ https://www.youtube.com/watch?v=Dh5DKrsXNc8

● Cave Generation Tutorial
○ https://www.youtube.com/watch?v=v7yyZZjF1z4

● Generating Procedural Dungeon
○ https://www.youtube.com/watch?v=ySTpjT6JYFU

● Rooms With Holes
○ http://procworld.blogspot.com/2012/03/building-rooms.html

● Procedural Texture Mapping Example
○ https://www.youtube.com/watch?v=LjotNeyFtOo

https://www.youtube.com/watch?v=Dh5DKrsXNc8
https://www.youtube.com/watch?v=Dh5DKrsXNc8
https://www.youtube.com/watch?v=Dh5DKrsXNc8
https://www.youtube.com/watch?v=v7yyZZjF1z4
https://www.youtube.com/watch?v=v7yyZZjF1z4
https://www.youtube.com/watch?v=ySTpjT6JYFU
https://www.youtube.com/watch?v=ySTpjT6JYFU
http://procworld.blogspot.com/2012/03/building-rooms.html
http://procworld.blogspot.com/2012/03/building-rooms.html
https://www.youtube.com/watch?v=LjotNeyFtOo
https://www.youtube.com/watch?v=LjotNeyFtOo
https://www.youtube.com/watch?v=LjotNeyFtOo

Summary
Background
Art & Terrain
Noise
Minecraft
Applications in Unity

Questions?

Thank You

