PRO_GEN

Procedural generation

Michael Gans
Tylor Lilley
Steve Moskal
Bob Tishma

Overview

Background

Art & Terrain

Noise

Game Generation
Applications in Unity
Summary

Questions

by
1 A \\\5 VAN
| No Man’s Sky

Background

e Method of creating data algorithmically rather than manually

e Computer graphics: commonly used for creating textures

e Video games: used for creating various other kinds of content
o Examples: items, quests or level geometry.

e Common applications include (not limited to)

o Smaller file sizes
o Larger amounts of content than can be created manually
o Theinclusion of randomness for less predictable gameplay experiences

e Also been used for various other purposes and in other media

Past

e Procedural generation has been used in video
as early asthe 70’s

@) ROguenke SUbgenre : Hits:Z9(29) Str:16(16) Gold:?18 Armor:5 E

o Beneath Apple Manor
e Earliest Graphical Computer Game

o limited by memory constraints forced content, such as maps, to be
generated algorithmically on the fly
m wasn't enough space to store a large amount of pre-made levels
and artwork

o Pseudorandom number generators were often used with predefined seed
values in order to create very large game worlds that appeared premade.

Past - Games

e Rouge (1980s) e Elite (1984)
e Akalabeth (1980) e Rescue on Fractalus (1985)
e River Raid (1982) e The Sentinel (1986)

COMMAMDT ATTACK
WHICH WEAFPON_AKE
TO THROW OR SWIMG::

Moving Toward Present Day

e Hardware Advances
o Able to store thousands of times as much data than was possible in the early 80s

e Content such as textures and character and environment models are created

by artists beforehand

o Keeps the quality of content consistently high.

o Needs to be designed by hand (large games take hundreds of artists)
e Hybrid/Middleware

o Pre-made with procedurally applied distortions

m SpeedTree

Present Day

e 2004
o .kkrieger
o RoboBlitz
o Spore
e 2006
o Dwarf Fortress
e 2008
o Left 4 Dead
e 2009

o Left4 Dead?2
o Minecraft

e 2014

o Elite Dangerous

Moving Toward the Future

Handmade Vs. Procedural Generation

0 60[600 6000 60000
. riangles triangles triangles triangles
D eta I | ed VS . F reed O m Diminishing returns - 15 years ago even doubling the amount of triangles

resulted in a much better mesh. Now, multiplying the amount by 10 hardly does.

Future

No Man’s Sky
o “a game about exploration and survival in an
o infinite procedurally generated galaxy”

e New methods and applications are presented
annually in conferences such as the IEEE
Conference on Computational Intelligence and
Games and Artificial Intelligence and Interactive
Digital Entertainment

. IEEE
Computational
Intelligence
Society

Artificial Intelligence and Interactive Digital Entertainment

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
GENERATED GALAXY.

ART & Terrain L] 11 [
e Wang Tiles _I_”_ _II____

o N =Horizontal Borders & M = Vertical Borders
m Complete Set: N°M?
m Full Tiling: 2NM

e Fractals
o Fractal Algorithms
m Perlin Noise
m Simplex Noise

NOISE

e Noise is a building block for creating a variety of procedurally generated
textures.

e Significantly, it can be used to simulate natural patterns from simple
mathematical functions.

e Although noise can be used to generate patterns in any number of
dimensions, I'll explain how 2D noise is used to create textures and
heightmaps.

White Noise

e The most basic type of noise is white noise.

e Generated by getting a random value [0,1] for
each pixel.

e Ew, what an unrealistic texture.

e Unlike white noise, natural patterns should have
smoothness as well as multiple levels of detail.

Interpolated Noise

Instead, let's make a 2D grid of points that has

a lower resolution that the pixels of our image.
Now we can interpolate between the four
surrounding points, called lattices, for each pixel.
Basic bilinear interpolation is a quick and simple
way to do this.

Turbulence

e At each pixel, this sum is known as the turbulence at that point. Each pass is
known as an octave.

e It actually looks pretty nice now. Unfortunately, you can still notice axis-
aligned bias. To deal with this, we need to use a better smooth function than
linear interpolation. |

This texture is created by
summing the above

textures at varying scaled
amplitudes.

Perlin Noise

e Our previous technique used value noise. This
means each lattice was assigned a single value
[0,1].

e Perlin Noise, instead of using a single value, uses
gradient noise. Each lattice is assigned a random
N-dimensional unit vector.

e To interpolate a pixel to a gradient point, you use
a vector pointing from the lattice to the pixel, and
dot product it with the gradient vector.

Perlin Noise (above) looks a lot better and
has less directional artefacts than the value
noise with bilinear interpolation (below).

Clouds with Perlin Noise

L D)

B
LA

oy

e
I

to make this T

Terrain Generation with Noise

e It's easy to apply our noise textures to heightmaps.
e Color at each pixel represents height.
e The cloud texture is an excellent representation of mountains.

Terrain Generator Code

5 public class Noisey :@: MonoBehaviour {

int width

8 int length ;

g int octaves = &;

10 float horizontalScale =

11 float werticalScale = 20

12

3 void Start () {

i4 Vector3[] wertices = new Vector3[width *# length]:
15 Vector2[] uv = new Vector2[width * length]:

1A int[] triangles = new int[{width - 1) * {length - 1} * &];
17

15 = *

19 for

20 for {int = = 0; = < length:; x++) |
21 int index = x + z*width;
22 vertices[index] = new Vector3(x,0f,z);
23 uv[index] = new Vectorz|{float)x/(width-1), (float)z/ (length-1)}:
24 }
25]
5 for (int i = 0; i < triangles.Length; i+=6) {
27 int offset = i*width/ (&% ({width-1}):
28 triangles[i] = pffset;
29 triangles[i+l] = ocffset+widtch;
30 triangles[i+2] = offset+i:;
triangles[i+3] = offset+l;
triangles[i+4] = off=et+widch;

triangles[i+5] offsec4width+l;

Terrain Generator Code

35

38 '* do nolrse *

37 for {int i = 0; i -« octaves; i++) {

33 for (int z = 0; z < width; z++) {

39 for {imt = = 0; ®= < length; =++) {

40 float frequency = (l1<<i)*horizontalScale;

41 float amplitude = 1<< [(octaves-1i});

42 float height = Hathf.PerlinMNoise (x / frequency, = / freguency) / amplitude;
43 vertices[x + z*width].y¥ += height*wverticalScale;
44 i

45 }

45 P

47

43 /* apply te gameobhjeckt */

49 Mesh terrainMesh = new Mesh ()

50 terrainMesh.vertices = vertices;

51 terrainMesh.uv = uv;

52 terrainMesh.triangles = triangles;

53 terrainMesh.RecalculateNormals () ;

54 [this.GetConponent<MeshFilter> () as MeshFilter).mesh = terrainMesh;

Terrain Generation with Noise

e Using a separate noise gradient, we can also define different areas of the
terrain to have exclusive parameters.

»d

In this low-resolution map, pixels with a color value <0.35 are where we place buildings.

Cool Texture Examples

Using math functions to generate simple textures as a base, we can add noise to

make some nice looking stuff.

AN

7

%

/
\\)

%

Marble-esque

Pixel at x,y = sin(x+y)/scale

Cool Texture Examples

Using math functions to generate simple textures as a base, we can add noise to
make some nice looking stuff.

Pixel at x,y = sin(sqrt(x*+y?)/scale Diseased-looking tree Nice slice of wood

Gaming

Content: Diablo, ESV: Skyrim,
Borderlands

Terrain: ESII: Daggerfall,
Scorched Earth

Both: Minecraft, Terraria, No
Man's Sky

Content

Skyrim - Dynamic Quest System
Diablo - Enemies, Items

Borderlands - Gun Creation

1

.

| oel-UpMotse-HesDawn] Zoom i [P] Sereenshit - [Escopel Cose -
sl .17 Rotate " [Mouse-2] Pan (Mouse-Hheek-Up/Mouse-Liseek-Doiin] Zoom | [F] Screenshot [Escopel

Terrain

The Elder Scrolls II: Daggerfall - 1996

Huge, mostly empty generated world
- Empty, meaningless

Massive maze like dungeons

- One is bigger than the world of
ESIII: Morrowind

Terrain

Scorched Earth: 1991 Terraria; 2011

1d noise (“Proper Function”) Terraria: 2D noise (“Polar”)

Minecraft: A Case Study

MineCraft ;: 2009

- Structures
Villages
Ruins
Strongholds

- Iltems
Chest-spawned
NPC-traded
Enemy-dropped

Terrain

Minecraft : 2009

- Uses 3d Perlin Noise and
Interpolation

- Values based on “seed”

- Values < n represent land where
Values >=n represent air

- Biomes assessed via graph

- Features added at end

Minecraft - Sculpting a world

Generate landscape
Biome designation

World details
Add structures

w2

Biomes

- Generated based on graph

- bordering biomes are logical
- temp vs rainfall

- Can alter elevation
- deserts are flat, etc

- Can be separated by river
- Alters spaws

Post-Processing

Features: minecraft-generated caves, ravines, lakes, lava lakes
Ores: spawn based on parameters
Structures: Villages, strongholds, temples

Villages are created by expanding outward from a well

Custom Horld Jettings

Ferlin Moise Octaves

Molse 1 Uctaves: 1 Moise & Uctaves, 1

Moise 4 Uctaves, 1 Noise o Uctaves, L NoIse 6 UcTtaves, o2&

Terrain 3titching Farameters

I # Lerp Factor: 0.00 I 2 Lerp Factor: B.00

T Lerp Factor: 8.608 l Jolid Cutoff Factor: .88

Moize & Stitching Data [1/12]

Hanaomize

lafaulis

- One octave active
- Gradual
- Smooth
- No “anomalies”
- No interpolation
- “Blocky”

- Features

- caves
- lakes
- biomes

Custom Horld Settings

Ferlin Hoise Octaves

II-:.-|:.._ CLeE]e) f-

Terrain Jtitching Faramatars
l ¥ Leare Factor: B.ED I 2 Larsy Factor: B.08

I ¥-Lare Faclor: 00D l Solid Cutoff Factor: 6.00

- Moize & Stitching Data [1/12] .

Handomize

- Two octaves active
- more interesting boundaries
- less predictable
- more anomalies

Ferlin Moise Octaves

Moise 3 Uctaves; 1

-1 - =y AT = - I A
Nolse & Uctaves; ¥

Terrain 3titching Farameters

I # Lerep Factor: A.29 l Z Lerp Factor: 8,29

l Y Lerp Factor: 0.08 l Solid Cutoff Factor: 0,00

- Moise & Stitching Data [1/12]

Same Perlin Noise
Interpolation in x
and z axes

No y “lerp”
Features remain
generally
uneffected

Ferlin MHoise Octaves

Terrain Jtitching Farameters

l % Lerp Factor: 8.24 l Z Lerp Factor: 8.24

l Y Lerp Factor: 5.68 l Solid Cutoff Factor: 0.08

Moise & Stitching Data [1/12]

HandomiZe

All 6 octaves active

- large terrain features given highest

magnitude
- perturbed by lower octaves
- Scaled up

More “funny” Characteristics

- boundaries “tucking” in on
themselves

- anomalies

- differences more drastic

Done Fandomize ‘ Defaul Frevieu [

Final World

Ferlin Moise Octaves

i Noise 1 Octaves: 3 [Noise 2 Octaves; 3 [Noise 3 Octaves) 3

I Noise 4 Octaves) 3 ‘ MNoise 5 Octaves) 3 I Noise & Octaves) 14

Terrain Stitching Farameters

[#Lere Factor: 624 [zLere Factor: 024

[_b T Lerp Factor: 8.12 ', Solid Cutoff Factor: 8,88

i Moise & Stitching Data [1512] >

| Fandomize Defaults Freuieu ‘ Eack - -

All other options remained
constant throughout

Applications in Unity

An Example Usage: Generating a Maze

e Depth First Search

e Kruskal's Algorithm

e Animation of Prim's Algorithm at work

https://upload.wikimedia.org/wikipedia/commons/transcoded/b/b1/MAZE_30x20_Prim.ogv/MAZE_30x20_Prim.ogv.480p.webm
https://upload.wikimedia.org/wikipedia/commons/transcoded/b/b1/MAZE_30x20_Prim.ogv/MAZE_30x20_Prim.ogv.480p.webm

Basic Overview of Prim’s Algorithm

1. Start with a grid full of walls and unmarked cells.
2. Pick a cell, mark it as part of the maze. Add the walls of the cell to the wall list.
3. While there are walls in the list:
e Pick arandom wall from the list. If the cell beyond that wall isn't in the maze yet:
o Destroy the wall and mark the cell on the opposite side of it

o Add the neighboring walls of the cell to the wall list.

e Remove the wall from the list.

Code Snippet

Cell Object Prefab: L BAThg Dnlryfngta-.
2 using System.Collections;
3
4 public class Cell : MonoBehaviour {
5

public bool wisited:
public GameObject north;
public GameObject east;
public GamelChject west:
public GameCbhject south:;
public GameCbject space;

~J

| e =
{6 T I s T Vi B |

sk

14

Source Code

Let’s Look at the actual algorithm in Unity and see it work!

Other Resources

SpeedTree Example
o https://www.youtube.com/watch?v=Dh5DKrsXNc8

Cave Generation Tutorial
o https://www.youtube.com/watch?v=v7yyZZjF1z4

Generating Procedural Dungeon
o https://www.youtube.com/watch?v=ySTpjT6JYFU

Rooms With Holes
o http://procworld.blogspot.com/2012/03/building-rooms.html

Procedural Texture Mapping Example
o https://www.youtube.com/watch?v=LjotNeyFtOo

https://www.youtube.com/watch?v=Dh5DKrsXNc8
https://www.youtube.com/watch?v=Dh5DKrsXNc8
https://www.youtube.com/watch?v=Dh5DKrsXNc8
https://www.youtube.com/watch?v=v7yyZZjF1z4
https://www.youtube.com/watch?v=v7yyZZjF1z4
https://www.youtube.com/watch?v=ySTpjT6JYFU
https://www.youtube.com/watch?v=ySTpjT6JYFU
http://procworld.blogspot.com/2012/03/building-rooms.html
http://procworld.blogspot.com/2012/03/building-rooms.html
https://www.youtube.com/watch?v=LjotNeyFtOo
https://www.youtube.com/watch?v=LjotNeyFtOo
https://www.youtube.com/watch?v=LjotNeyFtOo

Summary

Background

Art & Terrain

Noise

Minecraft
Applications in Unity

Questions?

Thank You

